A& Journal of Engineering Mathematics 44: 21-40, 2002.
'i“ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Hydroelastic behaviour of compound floating plate in waves

T.I. KHABAKHPASHEVA and A.A. KOROBKIN
Lavrentyev Institute of Hydrodynamics, Sberian Division of Russian Academy of Sciences, Lavrentyev
Prospect15, Novosibirsk, 630090, Russia (e-mail: tana@hydro.nsc.ru, kaa@hydro.nsc.ru)

Received 26 June 2001; accepted in revised form 14 February 2002

Abstract. The paper deals with the plane problem of the hydroelastic behaviour of floating plates under the
influence of periodic surface water waves. Analysis of this problem is based on hydroelasticity, in which the
coupled hydrodynamics and structural dynamics problems are solved simultaneously. The plate is modeled by
an Euler beam. The method of numerical solution of the floating-beam problem is based on expansions of the
hydrodynamic pressure and the beam deflection with respect to different basic functions. This makes it possible to
simplify the treatment of the hydrodynamic part of the problem and at the same time to satisfy accurately the beam
boundary conditions. Two approaches aimed to reduce the beam vibrations are described. In the first approach, an
auxiliary floating plate is added to the main structure. The size of the auxiliary plate and its elastic characteristics
can be chosen in such a way that deflections of the main structure for a given frequency of incident wave are
reduced. Within the second approach the floating beam is connected to the sea bottom with a spring, the rigidity
of which can be selected in such a way that deflections in the main part of the floating beam are very small. The
effect of the vibration reduction is quite pronounced and can be utilized at the design stage.
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1. Introduction

Very large floating structures are considered as an alternative of such land-based large facilities
as, for example, airports (Suzuki and Yoshida [1]). A proposed design of a floating airport has
a thin-plate configuration of large horizontal extent. The bending rigidity of such a floating
plate is small, and wave-induced motion of the plate is significantly affected by its elastic
deflection. The analysis of floating-plate behaviour in waves is based on hydroelasticity, in
which the coupled hydrodynamics and structural dynamics problems are solved simultane-
ously. A goal of the analysis is to predict accurately both the plate deflection and stresses
in the plate and to find ways to reduce these. The latter is of great importance for securing
safety and the structure’s performance. Reduction of the motion of a floating elastic plate
in waves by surrounding it by a breakwater was studied numerically by Nagata et al. [2]
and by Seto and Ochi [3]. It was shown that breakwaters effectively reduce plate response
for long waves but in the case of short waves the reduction is not large. The idea to put a
floating structure in the shadow of a breakwater for reduction of the structure response is clear
and practical. However, the problem in this case is that the environment in the ocean may
be affected adversely by the construction of bottom-mounted breakwaters. Another way to
reduce the floating-plate response was suggested by Yago et al. [4], which is to adjust a wave
reflector to the front side of the elastic plate. This is a vertical submerged plate, the height of
which is about three times less than the water depth, or a wave-breaking structure which is
a multi-column floating structure of smaller extent. Experiments revealed that both the wave
reflector and the wave-breaking structure decrease deflections of the main structure in the case
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of short incident waves. However, for long incident waves which provide greater deflections
of the main structure than short waves, the experiments did not detect sizeable effects of the
additional structures. Both approaches by Seto and Ochi [3] and by Yago et al. [4] are based
on the idea to protect (to shield) a floating elastic structure from the incident wave action, in
order to reduce a part of the wave energy which can be absorbed by the structure.

In order to test possible approaches aimed to reduce floating-plate response in waves,
direct numerical simulations of hydroelastic behaviour of the plate are very attractive. Three-
dimensional numerical simulation of the linear response of an elastic plate in waves is the
most accurate approach accurate approach at the present time. Three-dimensional numerical
simulations of floating rectangular plates in waves were performed by Kashiwagi [5] and by
Kim and Ertekin [6] among others. However, these simulations are still time-consuming and
expensive to use at the design stage. At the very initial stage of design it looks reasonable
to use the simplest models of floating-plate behaviour, in order to discover main trends and
to distinguish main features of the problem. If an effect is well-pronounced within a simple
model, it is expected to be of importance also within more accurate models. In this paper two
approaches to reduce elastic deflection of floating plates are described within the framework
of a two-dimensional linear theory. The plate is modeled by an Euler Beam.

The first approach is based on the concept of a vibration absorber which is well-known
in many engineering application such as rotation machinery (see, for example, Shabana [7,
Chapter 6], where single-degree-of-freedom systems are used. A traditional way of avoiding
undesirable vibration conditions is to change the system stiffness and its inertia characteristics.
On the other hand, it is possible to convert a single-degree-of-freedom system to a two-
degree-of-freedom mechanical system by adding an auxiliary spring-and-mass system. The
parameters of the added system can be selected in such a way that the vibration of the main
system is essentially reduced. The case of a floating elastic plate is more complicated than that
of a single-degree-of-freedom system. Nevertheless, the idea of a vibration absorber is also
helpful for the design of large floating structures. The idea is to add to the main floating struc-
ture an auxiliary floating plate of smaller size, with its own stiffness and inertia characteristics,
and to select the size of the auxiliary plate and its characteristics, which provide reduction
of the main structure deflections for a given frequency of the incident wave. The auxiliary
plate can be adjacent, either in front of the main plate or at its rear side. Even within the
two-dimensional linear theory the hydroelastic problem of floating plate is very complicated,
which is why we do not expect that simple formulae for the optimal parameters of the auxiliary
plate can be obtained. Numerical calculations have been performed to demonstrate the effect
of reduction of the main plate deflection with the help of an auxiliary adjacent floating plate.
A more rational way to obtain the characteristics of the auxiliary plate is not obvious at this
moment.

Within the second approach the floating beam is connected to the sea bottom with a spring,
the rigidity of which can be adjusted in such a way that the beam deflection due to incident
waves is reduced.

Both approaches lead to coupled problems in hydroelasticity, which are treated by the
common method described in the present paper. The developed method is applied to the
problem of a homogeneous free-free floating plate in waves, for which experiment al data
are available. The method is also applied to problem of a pre-cracked floating plate.

The formulation of the problem is given in Section 2. The method of analysis is described
in Section 3. Four cases are studied numerically, namely the floating beam is:

(i) homogeneous and free-free (Section 4),
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Figure 1. Basic configuration and notations.

(i) pre-cracked and free-free (Section 5),

(iif) compound with an elastic connection between the parts of the beam (Section 6),
(iv) homogeneous and elastically connected to the sea bottom (Section 7).

The formulation is given for the third problem on compound beam behaviour.

2. Formulation of the prablem

The hydroelastic behaviour of two connected floating beams in waves is considered by means
of a linear two-dimensional theory (see Figure 1). The beams are of constant thickness and
homogeneous. They are connected with a torsional spring of stiffness K. The drafts of the
beams, d; and d,, are assumed to be much smaller than both the total beam length 2L and
the liquid depth H. The bending stiffnesseses E;J; and E,J, of the beams and their drafts d;
and d,, are given. The beam vibrations are caused by a periodic incident wave of frequency
w and small amplitude A. The longer beam is referred to as the main structure, the elastic
characteristics of which are prescribed. The shorter beam is referred to as the auxiliary plate,
the length of which is given. The midpoint of the whole structure is taken as the origin of
the Cartesian coordinate system x’Oy’ (dimensional variables are denoted by a prime). The
right-hand-side plate (see Figure 1) is treated as the auxiliary one if I’ > 0 and as the main
structure if I’ < 0. The flow region, —H < y’ < 0, is bounded from below by a horizontal
undeformable bottom, y* = —H. The part of the upper boundary —L < x’ < L,y =0
corresponds to the floating structure, and the parts x’ < —L and x” > L correspond to the free
surface. The liquid is assumed to be ideal and incompressible, and its flow two dimensional
and potential. Within the framework of a linear theory the liquid flow is described by the
velocity potential ¢'(x’, y’, t'), and the structure’s vibration by its normal deflection w’(x’, ¢),
where ¢' is time. The beam deflection w’(x’, ¢') is governed by the Euler equation, whose
constant coefficients are different for the main structure and for the auxiliary plate. We shall
determine the beam deflection and the stress distribution in the beams and study their depen-
dence on the characteristics of the beam parts and conditions of their connection. In particular,
we need to determine both the characteristics of the auxiliary plate and the torsional spring
stiffness K7, which essentially reduce the vibration amplitude of the main plate.
Non-dimensional variables are used below. The half-length of the whole structure L is
taken as the length scale; 1/w as the time scale, where w is the incident-wave frequency; the
amplitude of the incident wave A as the deflection scale; the product pgA, where p is the
liquid density and g is the acceleration due to gravity, as the pressure scale; 2L,,d,,Apg as the
scale of the bending moments, where d,, is the draft and L,, is the length of the main structure
d,=d,L,=L+1N/2ifl'>0andd, =d,, L,, = (L—-1")/2ifl’ < 0); and the product
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AwL as the scale of the velocity potential. It should be noted that the frequency of the incident
wave is equal to unity and the total structure length to 2 in non-dimensional variables.

Within the linear theory the velocity potential of the flow ¢ (x, y, ¢) satisfies the following
equations

$ex +dyy =0, (=00 <x <400, —Hy <y <0),
¢y, =0, (h=—Hy),

¢y=n, vé+n=0 (y=0 Ix[>1D,

¢y =wi(x,1), (=0, [x]<D),

where Hy = H/L, y = Lw?/g; the equation y = n(x, t) describes the free surface shape.
In non-dimensional variables the deflection w(x, ¢) of the structure is governed by the Euler
beam equation

a(x)w,, + ﬁ(-x)wxxxx = P(X, 0, l), (|X| < 1) (2)
and the boundary conditions
Wy (X1, 1) =0, wye(£1,1) =0,

(1)

@)
w(l —0,1) =w(l+0,1),
ﬂlwxx(l - 07 t) = :82wxx(l + O, t)’ (4)
ﬂlwxxx(l - 07 t) = ﬂ2wxxx(l + 07 t)
wey(l —0,8) +kr[w,( —0,8) —w,( +0,1)] =0, 5)

where d; = di, a(x) = ay and f(x) = prwhen =1 < x < [;d; = dy, a(x) = o and
Bx) = ppwhen! < x < 1.0 =1/L;a; = yd;j/L, B; = E;J;/(pgL™, (j = 1,2);
kr = KrL/EJy is the dimensionless local flexibility coefficient.

The hydrodynamic pressure on the structure is given by the equation

p(x7 t) = _yd)t(x’ O’ t) - W(x, t)’
and the bending-moment distribution by
M(x,1) = =) L? [ Randy))wer (x, 1),

wherea,, =1+1,d, =difl >0anda,, =1—-1,d, = d ifl < 0. It should be noted that
the longer part of the beam is referred to as the main structure and the scaling of the bending
moments corresponds to this part.

We seek a solution of problem (1-5) subject to the following conditions on the behavior
of the free surface as x — +o0:

n(x,t) ~cos(tkx +1) + AP cos(kx —t +8@) (x = +00),

6
n(x,t) ~ A costkx +1t+87) (x - —00), ©)

where A and A are the amplitudes of the reflected and transmitted waves divided by
the amplitude of the incident wave, 67 and 6§ are the corresponding phase shifts, and
k is a dimensionless wavenumber that is a positive solution of the equation & tanh kHy =
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y. The wavelength of the incident wave A in dimensional variables is given by the formula
A = 2mL/k. The quantities A®, A, §4) and §~) are unknown beforehand and must be
determined, together with the flow parameters and the plate deflection w(x, r).

It should be noted that initial data are absent in the formulation of the problem (1-6), which
is due to the assumption that at large times the flow is time-periodic and independent of the
distinctive features of the initial conditions. The velocity potential ¢ (x, y, t) of the developed
wave motion of the fluid, the beam deflection w(x, ¢) and the pressure p(x, y, t) are sought
in the forms

PCx, ¥, 1) = dilx, y, 1) +Reliexp(in) @ (x, y)], wlx, 1) = Re[exp(in) W (x))], (7)
_ , ' __1coshlk(y + Ho)] .
p(x,0,1) = Re[exp(in P(0)],  ¢i(x,y,1) = y  cosh(kHo) sinkx +1),  (8)

where ¢, (x, y, t) is the velocity potential of the incident wave in the absence of the floating
plate. The new unknown functions ®(x, y), W(x), and P (x) are complex-valued. Substitut-
ing (7) and (8) in (1-5), we obtain

b +P,, =0, (—oc0<x<+00, —Hy<y<D0)), 9
&, =0, (y=—H)y, (10)
¢, =y®, (y=0, [x|>1), (11)
o, = W(x) —exp(ikx), (y=0, [x|<1), (12)
P(x) =y®(x,0) — W(x) +exp(ikx), (Jx] < 1), (13)
BOW"Y —a(x)W = P(x), (x| <), (14)
W/(£1) =0, W”(£l) =0, (15)
W —0)=W(I+0), BW'(I—0)=B,W'[I+0), BW"(1—0)=pp,W"(I+0),
(16)
W'l —0) + kr[W'( —0) — W' (I +0)] = 0. 17)

In terms of the new variables the radiation conditions (6) have the forms
®(x,0) ~ BPexp(—ikx), (x - +00), P(x,0) ~ B exp(ikx), (x - —o0), (18)

where the coefficients B and B~ have to be determined, together with the solution of the
boundary-value problem (9-17), A® = y|B®)|, 6 = —arg B and A = |1+ y B,
8§ =arg(1+ y B,

Equations (9-12) and (18) represent the hydrodynamic part of the coupled problem. This
part can be reduced to the integral equation for the hydrodynamic pressure P(x) along the
plate

1
P(x) + % / P(xo)K (x — xo) dxg = € — W(x). (19)
-1
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The function K (z) in (19) is given as

ke—iklzl o sje—sj-lz\

K(z) = —2ri + 2 :
Ho(k? —y?) +y 2 Ho(s? +y?) —y

j=t

where s; = (mj —d;)/Hp and §; is the solution of the equation §; = arctan(y Ho/(mrj — §;)),
j=1

To derive the integral equation (19), we have assumed that the pressure P(x) is known
along the plate. Then the boundary-value problem defined by (9—11) and (18) together with
the condition y® — ® = P(x), where y = 0, |x| < 1, is solved with the help of the Fourier
transform. The resulting solution gives the potential ®(x, 0) along the plate as a convolution
integral. Substituting this integral in Equation (13), we arrive finally at Equation (19).

Below we solve the problem (14), (19) with the boundary conditions (15)—(17) numeri-
cally. We shall determine the amplitude of the plate deflection |W (x)| and that of the bending
moments |M (x)| = mtax |M (x, t)| for given characteristics of the incident wave and the beam.

3. Method of solution

Problem (14), (19) can be solved with the help of the normal-mode method in the same manner
as in [8] with eigenfunctions of the compound beam as basic functions. This method reduces
the integral equation (19) to an infinite system of algebraic equations with respect to the
principle coordinates of the pressure P(x). However, the eigenfunctions of the compound
beam are rather complicated and, moreover, they do not correspond to the features of the
pressure distribution along the beam. A main idea of the present study is to use different basic
functions for the pressure and the beam deflection. Trigonometric functions are used as basic
ones to present the pressure in the form

1 & SN
P(x) = 590 + ;a,ﬁ‘) cos mnx + ;alg‘” sin wnx. (20)

Substitution of expansion (20) in equation (14) leads to the following expansion for the beam
deflection

1 . [ , ‘ [
W(x) = anwé )(x) + Z a,(f)w,(f)(x) + Z a,(f)w,(f)(x). (21)
n=1 n=1

The functions w'®(x) and w'*(x) satisfy conditions (15-17) and Equation (14) with P (x)
being replaced by cos(nmx) and sin(nwx), respectively. The functions w'?(x) and w' (x)
are considered here as basic functions for the beam deflection.

The integral equation (19) accounting for expansions (20) and (21) leads to an infinite
system of algebraic equations with respect to the coefficients ac, and as,. If N terms in each
sum of the expansions (20) and (21) are taken into account, then the system can be presented
in matrix form as follows:

<I +%S+A)Zz=2, 22)

where | = diag(2,1,1,...) is the diagonal matrix; the symmetric matrix S comes from
the integral term in (19) and the symmetric matrix A comes from the term W(x), and a =
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(a0/2,a,ay, ... a,a,ay’, ..., a)T. The elements of the vector é are the coefficients
in the expansion of exp(ikx) with respect to the trigonometric functions. The sizes of the

matrices |, Sand A in Equation (22) are equal to (2N + 1) x (2N + 1). The matrix S has the

form

cc cc cc cc sC sC Sc
Soo Sor Soz -+ Son | Sor Sez -+ Sow
cc cc cc cc sC sC A&
Sio St Sz - Sov | S Sz - - Sty
cc cc cc cc sC sC sC
S0 Sa1 Sz Son | S Sz -0 So
— cc cc cc cc sc sc sC
S=| Svo Sx1 SNz - - - Syw|[Sn1 Sn2 - Saw |
sc sc sc sC SSs SSs SSs
Sio Su Sz - - Siv|Su S Siy
sC sc sC sC SS SS SS
S Sa1 Sz o Sov | S S Sy
sC sC sC N& sS sS AR
Sno Sn1 Sz - Sun|Sw1 Sna - 0 - Sy

where

1 p1
S = / / K(x — y) cos(mnx)cos(mmy) dx dy, (n>0,m=>0),
1/

(n>0,m >0,

1 1
Soe = / / K (x — y) sin(znx) cos(zmy) dx dy,
1J1

(n>0,m > 0).

1 1
Spm = / / K (x —y) sin(znx) sin(zrmy) dx dy,
-1/

It is clear that the matrix S is symmetric. Moreover, S = 0 (n = 0,1,2,..., m =
1,2,3,...), which follows from the equality K (—z) = K(z). It can be shown that the matrix
A is also symmetric and has a form similar to that of matrix S. Once the functions w!® (x) and
w'®) (x) have been determined, we obtain

1
A = / w'(x) cos(rmx) dx, (n>0,m > 0); (23)
-1

1 1
A = / w,(f)(x) cos(mmx) dx = / w,(,f)(x) sin(mrnx) dx, (> 0,m > 0); (24)
1 -1

1
AS = / w (x)sin(rmx) dx, (n > 0,m > 0). (25)
-1

The elements of the matrices Sand A and those of the vector ¢ are given by analytical formu-
lae, which are not reproduced here. The matrix A is different for each of the problems listed
in Section 1. Other elements of the algebraic system (22) are common for each particular
problem.
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4. Free-free homogeneous beam

The problem under consideration with «; = «,, 81 = B> and kr = oo corresponds to that
of hydroelastic behaviour of the homogeneous free-free beam in waves. In this case the basic
functions v (x), (n > 0) satisfy the following equations

d4w(©

B o aw'? = cos(rnx) (x| <1); (26)
d2w(© Bw'
i (1) =0, o (1) =0. (27)

The functions w® (x)(n > 0) are determined as solutions of the boundary-value problem
(26)—(27) with cos(rnx) being replaced by sin(srnx). Exact solutions of these problems are
given by the formulae:

© © coSTnx (—1)"(rn)?(cosh Ax sin A — cos Ax sinh A)
wy (x) = —1/a, w,”(x) = 2 5 2 - - ,
BrEm)* —a  A2(B(mn)* — a)[cos A sinh A + cosh A sin A]

(28)

() = sin Tnx (—=1)*(zn)3(sin Ax sinh A + sinh Ax sin 1) 29)

B(mn)* —a = A2(B(wn)* — a)[cosh A sin A —cos A sinh A]’
where A/« /B. Substituting (28)—(29) in (23)—(25), we find the elements of matrix A
H e 8}1)11
Ay, = A

_ N 4?nPm?(—1)"" B
mn = (Bt —a) | A(cOtA + coth A) (Bt — a)(Brim? — )’

, , Snm Ar°n3md(-1)"" B
ASS — ASS — _ ,
o ™ (Br*n* —a)  A3(coth A — cot A)(Brn? — a)(Brim* — )

A = —2/a, AS = AL =0, A% =AL =0, A =A% =0 (n,m > 0).

Here §,,, = 0ifm #nand é,,, = 1if m = n. As aresult, the matrix A has the form

Aglo 0 ... 0]0 0 --- 0
0 [A% A% - .- A5 [0 0 --- 0
0 [AL A% - - - A% | 0O 0 --- 0
A=| 0 [AS A%, - - - ASy| O 0 .- 0
0[]0 0 --- 0 |[A} A - - - A,
00 0 --- 0 |AS A} - - - A3
0[]0 0 --- 0 |[AY AY, - - - ANy
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Figure 2. Amplitudes of the floating-plate deflection and bending moment. T = 0-7. Solid line — numerical
results, circles — experimental data [9].

Matrix S has the same form, which indicates that the even and odd parts of the hydroelastic
problem for homogeneous beam can be separated and solved independently.

Numerical calculations were performed for the conditions of the experiments carried out
by Wu et al. [9] for a homogeneous narrow plate in a channel. The experimental model was
10 m long, 50 cm wide and 38 mm thick, and had a density of 220 kg/m?, an elastic modulus
of 103 MPa and a draft of 8-36 mm. The experiment was performed at a water depth of 1.1 m,
using incident wave heights of 5, 10 and 20 mm. In this case EJ = 471 kg m3/s?>, L = 5 m.
The frequency of incident wave is equal to 8-98 s~* (period of the wave T = 0.7s), 4.4 s7*
(period of the wave T = 1-429 s) and 2.2 s~ (period of the wave T = 2.875 s). As a result
B=77x107° a =0-069, « = 0-016 and & = 0-004, y = 41.06, y = 9-85and y = 243,
k = 41.06, k = 10-1 and k = 3-654, respectively, depending on the incident-wave frequency.

Convergence of the numerical algorithm was checked by changing the number of terms
taken into account in each sum of expansions (20) and (21). It was found that the numerical
results obtained with the number of retained terms greater than 50 are practically identical.
Ninety terms (N = 90) were used to plot the obtained numerical results.

The calculated amplitudes of both the beam deflection |W (x)| and the bending moments
M (x)| are shown in Figure 2 for T = 0.7 s, in Figure 3 for T = 1-429 s and in Figure 4 for
T = 2-875 s by solid lines. The results of the experiments by Wu et al. [9] are depicted by
circles. It should be noted that agreement between the experimental and numerical results is
fairly good.

The problem for a homogeneous beam was studied by Sturova [10] with the domain de-
composition method, by Korobkin [8] with the normal mode method and by Wu et al. [9] with
the help of a combination of these methods. The present results for the homogeneous beam are
identical to those obtained in [8—10] by other methods. It should be noted that the numerical



30 T.I. Khabakhpasheva and A.A. Korobkin

LG I T

0.5} ) !

A R S S

—_ |
O
o -
g
ot

15— —
1.25 .
1 o 0 .
0751 /° .
0.5 ° \ o\ -
0.25 200 )\

0—5—4—3—2—10 1 2 3 415

|M(z)]

Figure 3. Amplitudes of the floating-plate deflection and bending moment. T = 1.429. Solid line — numerical
results, circles — experimental data [9].

0.75 | 8
0.5r .
0.25 i

0 s I3 5.1 0

— |-
Do
w -
g
w

0.5 L e — T
0.4
0.3F 2 = g2 4
021 1
0.1F 1

s —r 3 5-10 1 2 3 ‘]%;5

|M(z)|

T
I

Figure 4. Amplitudes of the floating-plate deflection and bending moment. T = 2.875. Solid line — numerical
results, circles — experimental data [9].



Hydroelastic behaviour of compound floating plate in waves 31

/ \
i | V] |
] {
(o} g \
\ Il L KT
é _h _M_ é @
MR Vil
-0 ’—0’ ! )
Figure 5. Scheme of the crack modeling.
le[}O() T T . T }
750 f i
500 -
250
0 I
0 0.2 0.4 0.6 0.8

alh l
Figure 6. Torsional spring stiffness k7 as a function of a/ h.

results from [8—10] are in good agreement for low frequencies of incident waves but differ
from each other for high frequencies. The problem of high-frequency excitation of floating
elastic plates has not yet been solved. The low-frequency case is considered here only.

5. Freefreecracked beam

Large floating structures of pontoon type are very flexible and may be damaged owing to
periodic wave loads. In reality the structures initially contain small flaws (cracks, cavities and
inclusions), which can absorb a part of the wave energy during fluid-structure interaction and
can grow in time.

In the framework of the linear theory the presence of a crack is modeled with the help of a
torsional spring (see Figure 5). The stiffness K of the equivalent torsional spring for a single-
sided crack is assumed known as a function of the beam parameters and the crack length a.
This function is presented in [11] and depicted in Figure 6. The solution for the floating free-
free beam, which is divided into two parts by a torsional spring, provides the bending stresses
outside the crack region. This solution together with the results by Bueckner [12] makes it
possible to evaluate the stress distribution near the crack. This problem is not considered here.

The mathematical problem is described by Equations (14), (19) and conditions (15)—(17),
where a; = ay, f1 = f,. The basic functions v (x), w(x) (n > 0, m > 0) will be given
in Section 6 for more general case.

Calculations were performed for the conditions of the experiments by Wu et al. [9] with
an homogeneous plate. Results of numerical calculations for two positions of the crack are
presented in Figure 7 (! = —0-3) and in Figure 8 (I = 0-15). The results are depicted for an
homogeneous beam (a = 0, curve 1) a broken beam (a = & curve 2) and a cracked beam
(a/h = 0- 8 curve 3). Vibrations of the plate are generated by surface waves incident on the
plate from the right.
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Figure 7. Amplitudes of the floating-plate deflection and bending moment. [ = —0.3, T = 1-429. Line 1 is for
homogeneous beam (a = 0), line 2 is for broken beam (a = &) and line 3 is for cracked beam (a/h = 0.8).

Analysis of numerical results obtained for different positions and lengths of the crack gives:
Presence of a crack changes the distributions of both the plate deflections and stresses,
provided the crack is longer than one half of the plate thickness. The longer the crack,
the more pronounced are the changes.
Local maximum of the deflections and local minimum of the bending stresses occur at

the crack position.

In front of the crack the stresses are greater and behind the crack they are smaller than
for the homogeneous plate.
These changes are more pronounced if the crack is located at the points of maximum
bending stresses of the equivalent homogeneous plate.

6. Freefree compound beam

In order to model a floating plate with a vibration absorber, the linear problem of a compound
beam is considered. The parts of the beam are connected with the help of a torsional spring.
The longer part is referred to as the main structure, the characteristics of which are prescribed.
The shorter part of the compound beam is referred to as an auxiliary plate, the length of which
is given. Both characteristics of the auxiliary plate and the torsional spring stiffness, which
essentially reduce the vibration amplitude of the main structure, must be determined. The
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Figure 8. Amplitudes of the floating-plate deflection and bending moment. [ = 0-15, T = 1429. Line 1 is for
homogeneous beam (a = 0), line 2 is for broken beam (a = &) and line 3 is for cracked beam (a/h = 0.8).

Figure 9. Floating structure with attached auxiliary plate: case a — in front of the main plate, case » — at the rear
side of it.

auxiliary plate can be adjacent either in front of the structure (see Figure 9, case a) or at the
rear side of it (case b).

The mathematical formulation of this problem is given by Equations (14), (19) with bound-
ary conditions (15)—(17). In this case basic functions w®(x), (n > 0) are determined as
solutions of the problems

d*w

B(x)—2 — a(x)w'” = cos(mrnx) (|x| < 1); (30)
dx4

2..,(c) 3.,,(c)

w, (+1) =0, " (41) = 0;

dx? dx3
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2,,,(c) 2,(0)

() — © n _ n
w, (-0 =w,"(+0), B 02 (1 —0) =8 ) (1 +0),
d3w’(10) d3w’(10)
Prgas (=0 =h—5-1+0)
d?w® dw(© dw®
02 (l—0)+k7[ . (l—O)—F(l—i-O)]—O.

The functions w(® (x) can be presented as
w9 (x) = Fy, €0S wnx + Dy, €OS Ayx + D, c0sh Ayx + Ds, Sin Ayx + Dy, Sinh Ayx

0 <x <, (32)

w9 (x) = F,, €0S mnx + Ds, €COS Azx + Dg, c0sh Apx + D7, Sin Azx + Dg, Sinh A,x

0 <x <, (32)

where the coefficients D;, (j = 1,2, 3, ... ,8) are unknown in advance, »; = J«;/B; and
Fi, = 1/(Bi(mn)* — ;) (i =1, 2). Substitution of representations (31) and (32) in the bound-
ary conditions leads to the linear algebraic system with respect to the coefficients D;, (see
Appendix). If we replace cos wnx with sin 7nx in both Equation (30) and expressions (31),
(32), we obtain the similar linear algebraic system for coefficients of the functions w'®(x)
(n > 0). Then using formulae (23)-(25) we can evaluate the elements of the matrix A.
Calculations were performed for the conditions of experiments by Wu et al. [9] for the main
plate. The period of the incident wave is equal to 1-429 s. Figure 10 shows the distribution
of the beam deflection and the bending moment amplitudes, when the length of the auxiliary
plate is equal to 1-5 m, (EJ)ax = 10(EJ)main and kr = 0. Line 1 is for the single plate,
line 2 for case (a) and line 3 for case (b). Figures 11 and 12 show the same quantities for
the following parameters of the auxiliary plate: Loy =2-5 M, (EJ)aux = 100(E J)main With
kr = 0 and k7 = 500, respectively.
The calculations were carried out for different values of the parameters of the auxiliary
plate. It was revealed that:
e auxiliary plates adjacent in front of the main structure (case (a)) decrease the structure
vibrations;
e Vvibrations of the main structure increase with auxiliary plates attached to its rear side
(case (b));
reduction of the vibrations is stronger if the plates are simply connected (k; = 0);
auxiliary plate of length 1.5 m decrease the deflections by 20% (case (a)) and increase
them by 10% (case (b));
e essential reduction (35%) of the structure vibrations was obtained in the case of rigid
auxiliary plates of length 2-5 m simply connected in front of the main structure.
Roughly speaking, in order to reduce the floating-plate vibrations, a rigid plate of smaller
length has to be simply connected in front of the main structure.
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Figure 11. Amplitudes of the compound-plate deflection and bending moment. 7 = 1-429, Layx = 0-25Lmain,
(EJ)aux = 100(E J)main, k7 = 0. Line 1 is for a single plate, line 2 is for the case a, line 3 is for the case b.
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Figure 12. Amplitudes of the compound-plate deflection and bending moment. T = 1-429, Laux = 0-25Lmain,
(EJ)aux = 100(E J)main, k7 = 500. Line 1 is for a single plate, line 2 is for the case a, line 3 is for the case b.
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Figure 13. Fluid-structure system with plate edge being elastically connected to the see bottom.

7. Floating beam with its edge being elastically connected to the sea bottom

The solution of problem (19)-(20) with «; = «», B1 = B2, kr = oo and boundary conditions
W'+l =0, W"(-1)=0, W"(+1) =—-kW(+1)

describes the hydroelastic behaviour of an homogeneous floating beam with its edge being
elastically connected to the sea bottom (see Figure 13). Here k; = K, L3/E J, where K; is the
stiffness of the connecting spring. It was revealed that elastic connection of the front edge to
the bottom can essentially reduce the beam deflections in the main part of the beam. Rigidity
of the elastic connector can be selected in an optimal way for a given frequency of incident
wave.

In this case the basic functions w ) (x), (n > 0) are determined as solutions of the problems

d* w,(f)

B . aw,(f) =cos(mrnx) (|x] <1); (33)
d2wr(lc) d3wlgc) d3wr(lc) .
dx? (#1) =0, dx3 -1 =0, dx3 (D) = —kw,?; (34)
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and are sought in the forms
w'9(x) = F, c0s mnx + Dy, C0S Ax + Dy, cosh Ax + D3, sin Ax 4+ Dy, sinh Ax.  (35)

Here D;, (j = 1,2, 3, 4) are unknown coefficients, > = J/«o/p and F, = 1/(B(mn)* — a).
As in the previous cases, we substitute (35) in the boundary conditions (34), which leads to a
linear algebraic system with respect to the unknown coefficients:

TD, =F,,
where
F, = ((-1)"(wn)’F,, 0, (=1)"(wn)?*F,,—kF,)", D, = (D1, Doy, Day, Day)"

and the matrix T has the form

—22 cos A A2 cosh A A2 sin A —X2 sinh A
T —23sin A —23 sinh A —23 cos A A3 cosh A
B —22 cos A A2 cosh A —22 sin A A2 sinh A

A3sinA 4k cosa Asinh A +k cosha —A3cosi+k sini A3 cosh i +k; sinh A

If we replace cos m nx by sin wnx in Equations (33) and (35), we obtain a similar algebraic
system for the coefficients of the functions w'®(x)(n > 0). Matrix T of this system is the
same, but the vector F, has the form

F, = (0, (=1)"(wn)*F,, 0, (=1)"(wn)*F, — k;, Fy)" .

After the functions w(® (x) and w' (x) have been found, the matrix A is obtained in the same
manner as before.

Figure 14 shows the amplitudes of the beam deflections and the bending moments for the
free-free beam (k; = 0O, curve 1) and for an elastically connected beam (k;, = 770 curve 2;
k; = 1000 solid curve 3 and k; = 600 dotted curve 3). The parameters of the numerical
calculations are the same as in experiments by Wu et al. [9] with the wave period T = 1-429 s.
One can see the curve with k; = 1000 is similar to the curve with k; = 600. It is seen that the
dimensional rigidity of the elastic connector k; = 770, which corresponds to K; &~ 2930 kg/s?,
can be considered as optimal for the experimental conditions [9]. For another frequency of the
incident wave the connector rigidity has to be changed, which can be done with an active
control system.

8. Conclusion

In this paper several two-dimensional problems of floating-plate behaviour in waves were
analyzed. These problems are: free-free homogeneous beam in waves, cracked beam in waves,
compound beam with an elastic connection between its parts and homogeneous floating beam
which is elastically connected to the sea bottom. All problems are treated by a common
method. This method is based on hydroelasticity, in which the coupled hydrodynamics and
structural-dynamics problems are solved simultaneously. Deflections and bending moments
in the plate, as well as approaches for their reduction, have been analyzed using the developed
method.
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Figure 14. Amplitudes of the moored plate deflection and bending moment. 7 = 1.429. Line 1 is for the free-free
beam (k; = 0), line 2 is for elastically connected beam (k; = 770), solid line 3 is for k; = 1000 and dotted line 3
is for k; = 600.

A main idea of the presented method is to use different basic functions for the pressure
distribution and the beam deflection. Trigonometric functions are used as basic functions
for the hydrodynamic part of the problem. The elastic part of the coupled problem in each
particular case was reduced to a boundary-value problem for a simple pressure distribution:
either cos wnx or sin wnx. As a result, the treatment of the hydrodynamic part of the problem
was simplified and at the same time the beam boundary conditions were accurately satisfied.

With the help of the developed method two approaches aimed to reduce the plate vibration
were studied. It was shown that, in order to reduce the floating-plate vibrations, a rigid plate
of smaller length has to be simply connected in front of the main structure. In the second
approach the floating beam is connected to the sea bottom with a spring. It was demonstrated
that the spring rigidity can be selected in an optimal way for a given frequency of the incident
wave, in order to reduce the deflections of the main part of the plate. In both cases the effect
of the vibration reduction is quite pronounced and can be utilized at the design stage.

The developed method can be used to treat other hydroelastic problems of very large
floating structures with different boundary conditions at the plate edges and different design
features.
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Appendix

To find the undetermined coefficients D;, (j = 1,2,3, ..., 8) we have the linear algebraic
system:

—1200s A1 Dy, + A2 cosh A1Ds, 4 A2 sin A1 D3, — A2 sinh Ay Dy, = (—=1)"(wn)?Fi,,
—23 sin A1 Dy, — A3 sinh Ay Dy, — A3 cos A1 D3, + A3 cosh A1 Dy, =0,

—23 €0S ApDs, + A3 cosh A, D, — A5 Sin Ay D7, + A5 sinh A, Dg, = (—1)" (wn)*Fy,,
A3 sin A2Ds, + A3 sinh Ay Dg, — A3 €OS A D7, + A3 cosh A,Dg, =0,

C0S A1lDyq, + cosh A1l D5, + sin A1l D3, + Sinh A1l Dy, — €0S Ayl Ds, — cosh Ayl Dg,—
—Sin Asl Dy, — sinh Ayl Dg, = (Fy, — F>,) C0S mnl,

—12 €08 A1l D1, + A2 cosh A1l Dy, — A2 sin A1l D3, + A2 sinh Ayl Dy, + (A.1)
+A38 €0S Aol Ds, — A38 €OSh Aol Dg,, + 238 Sin Aol D7, — A38 sinh Aol Dyg

= (F1, — 8 Fy,)(7wn)? cos wnl,

A3 sin gl Dy, + A3 sinh 110Dy, — A3 €08 A1lDs, + A3 cosh A1lDy,—

—238 sin Aol Ds, — A38 sinh Ayl Dg, + A38 €OS Aol D7, — 238 cosh Xl Dg,

= —(Fy, — 8 F»,)(mrn)® sin rnl,

(=22 €08 Ail — kpry Sin Agl) Dy, + (A3 cosh Ayl + kpAy sinh Al) Do, +

(—=A2 sin Agl + krAy €OS A1l) D3, + (A2 sinh Aql + krAg cosh A1l) Dy,

4kt Xy Sin, Aol Ds,—

—kyXaSinh Aol Dg, — kpAp COS Aoyl Dy, — kpip COSh Aol Dg, = Fu,(7n)?cos mwnl

+(F1, — Fop)ky(tn) sin wnl.

Here § = 81/B>.
The functions w,(;‘)(x)(n > 0) have the forms

w¥) (x) = Fy, Sin wnx + Dy, €0S A1x + Dy, cosh Aix + D3, Sin Ayx + Dy, sinh Aix,
O <x <,

w;)(x) = F», sin wnx 4+ Ds, €0S Asx + Dg, cosh Aox + D7, Sin Asx + Dg, Sinh Aox,
(I <x <1,

The coefficients D;,(j = 1,2,3, ... ,8) satisfy system (A.1) with its right-hand side being
replaced now by the vector
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(0, (—1)”(7[”)3[?1", 0, (—1)71(7T7’l)3F2n, (Fln - FZn) sin nnl, (Fln - 8F2,1)(nn)2 sin nnl,

(Fi, — 8 Fn)(7n)® cos nl, Fu,(;rn)? sin wnl — (Fu, — Fan)ky(tn) cos wnl)’.
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